Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanotechnology ; 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38697049

RESUMO

Perovskite quantum dots (QDs) and organic materials have great research potential .

2.
J Anim Sci Biotechnol ; 14(1): 151, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-38053167

RESUMO

BACKGROUND: The ovaries are one of the first organs that undergo degenerative changes earlier in the aging process, and ovarian aging is shown by a decrease in the number and quality of oocytes. However, little is known about the molecular mechanisms of female age-related fertility decline in different types of ovarian cells during aging, especially in goats. Therefore, the aim of this study was to reveal the mechanisms driving ovarian aging in goats at single-cell resolution. RESULTS: For the first time, we surveyed the single-cell transcriptomic landscape of over 27,000 ovarian cells from newborn, young and aging goats, and identified nine ovarian cell types with distinct gene-expression signatures. Functional enrichment analysis showed that ovarian cell types were involved in their own unique biological processes, such as Wnt beta-catenin signalling was enriched in germ cells, whereas ovarian steroidogenesis was enriched in granulosa cells (GCs). Further analysis showed that ovarian aging was linked to GCs-specific changes in the antioxidant system, oxidative phosphorylation, and apoptosis. Subsequently, we identified a series of dynamic genes, such as AMH, CRABP2, THBS1 and TIMP1, which determined the fate of GCs. Additionally, FOXO1, SOX4, and HIF1A were identified as significant regulons that instructed the differentiation of GCs in a distinct manner during ovarian aging. CONCLUSIONS: This study revealed a comprehensive aging-associated transcriptomic atlas characterizing the cell type-specific mechanisms during ovarian aging at the single-cell level and offers new diagnostic biomarkers and potential therapeutic targets for age-related goat ovarian diseases.

3.
Sensors (Basel) ; 23(16)2023 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-37631788

RESUMO

The performance of an active control system, crucial for the co-phase maintenance of segmented mirrors, is closely related to the spatial layout of sensors and actuators. This article compares two types of edge sensor layouts, vertical and horizontal, and proposes a novel tandem differential sensor layout that saves layout space and reduces the number of positioning references. The control performance of this scheme is analyzed in terms of error propagation, mode representation, and the scalable construction of the control matrix. Finally, we constructed a tandem differential-based sensor detection system to examine the performance of edge sensors and the effect of laboratory environmental variables on sensor measurements. Simulations and experiments demonstrate that this scheme has the same ability to fully characterize actuator modification modes as the Keck edge sensor layout. Although the total error multiplier is slightly larger than the latter, it has fewer scalable control matrix types and stronger spatial and segmental shape adaptation capabilities. Actual measurements show that the sensor's own noise in a tandem differential layout is less than 20 nm, which meets the requirements for future segmented co-phase maintenance. This layout type can potentially be applied to future small and medium-sized segmented splices.

4.
Nanotechnology ; 34(18)2023 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-36724502

RESUMO

Ag2S quantum dot (QD) photodetectors (PDs) have attracted a lot of attention in the field of imaging system and optical communication. However, the current Ag2S PDs mainly works in the near-infrared band, and its detection ability in the visible band remains to be strengthened. In this paper, we used poly(3-hexylthiophene) (P3HT) with high carrier mobility and Ag2S QDs to construct heterojunction PD. Stronger absorption in blends with polymer P3HT compared to single Ag2S QDs. The optical absorption spectra show that the Ag2S/P3HT has strong light absorption peak at 394 and 598 nm. The results show that P3HT significantly enhances the absorption of Ag2S QDs from the visible to near-infrared band. The output characteristics, transfer characteristics and fast switching capability of the device at 405 nm, 532 nm and 808 nm were tested. The device has the responsivity of 6.05 A W-1, 83.72 A W-1and 37.31 A W-1under 405 nm, 532 nm and 808 nm laser irradiation. This work plays an important role in improving the detection performance of Ag2S QDs and broadening its applications in photoelectric devices for weak light and wide spectrum detection.

5.
Appl Opt ; 61(13): 3566-3578, 2022 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-36256394

RESUMO

For large ground-based telescopes, static and dynamic disturbances would greatly degrade the optical performance. This is especially true for wide field survey telescopes with prime focus optics. The estimation of disturbance effects on large telescopes is becoming increasingly important during the design phase. Therefore, a wide field survey telescope with 2.5 m aperture and 3.5 deg field of view is studied in this research. This telescope is under construction now, and its first light is expected at the beginning of 2023. The estimation method for the optical performance under static and dynamic disturbances in the temporal domain and the active compensation method to improve the optical alignment, are investigated, which is a supplement for the simulation in the frequency domain. First, based on the mechanical model, the optical misalignment is established, where the deviation of the primary mirror is obtained from the length gauges and the deviation of the corrector is computed using the fitting method. Second, a method for compensating the static and dynamic disturbances is proposed, improving the optical performance. This method uses the disturbed primary mirror as the reference, and the corrector is actively controlled to align with it. Finally, a series of experimental tests and numerical simulations is conducted. The results show that the mechanical modeling error is within 10% and the maximum optical misalignment is reduced from 12''/0.27 to 0.2''/0.006mm for static disturbance and from 1.3''/0.03 to 0.4''/0.01mm for dynamic disturbance. Through active compensation, the telescope optical property is greatly improved. The modeling method and the simulation process mentioned in this research can also be used in the other relevant fields.

6.
Materials (Basel) ; 12(24)2019 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-31835570

RESUMO

SEM, TEM characterizations, in combination with tensile tests, provided an intriguing observation that ultra-high-strength and good ductility could be achieved simultaneously by changing the ratio of large and small precipitates in high-carbon steel (1.0C-1.5Cr-0.31Mn-0.20Si, wt %). The high yield strength of 670 MPa, tensile-stress of 740 MPa, and good ductility (elongation of 26%) were obtained by adopting spheroidization annealing, cold rolling, recrystallization annealing, and cold drawing. This led to nanosized precipitates with a large ratio of big size to the small size of 0.28, promoting high dislocation storage of 1.39 × 1014 m-2. In addition, the finite element (FE) method was used to simulate the cold-rolling process, and the largest stress and strain were 830 MPa and 0.6 at a depth of 3 mm after the fourth pass of the 0.10C-1.50Cr steel, respectively. The stress and strain accumulation in the top layer was potentially caused by severe plastic deformation, as well as attrition rendered by the rollers. This explained the emergence of dense low-angle grain boundaries in the region close to the surface of the cold rolled steel.

7.
RSC Adv ; 8(21): 11388-11394, 2018 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-35542762

RESUMO

Surface energy is essential to the friction properties of materials, but until now the investigating scope for DLC films has still been narrow. In this paper, we try to expand the surface energy scope of DLC films to their limits by surface modification and study their influence on friction properties. In this case, we not only control the surface energy of DLC films but also manipulate that of the counter balls, by using piranha etching and octadecyltrichlorosilane (OTS) modification. The surface compositions, wettabilities and friction properties of DLC films and counter balls were investigated. The results indicate that the surface energies of DLC films and counter balls can be adjusted successfully in the ranges of 31.2 to 73.73 mJ m-2 and 15.69 to 72.93 mJ m-2, respectively. The frictional tests show that all the as-modified DLC films retain relatively stable friction curves, which derive from their good load-carrying and wear-resistance capabilities. Specifically, the DLC-OH covered with vast oxygen-containing groups shows poor frictional properties, owing to its high surface energy and strong adhesion. In contrast, the DLC-OTS exhibits amazing friction reduction properties, due to its ultra-low surface energy and special film structure.

8.
Chem Commun (Camb) ; (28): 4239-41, 2009 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-19585033

RESUMO

Lotus-leaf-like superhydrophobic surfaces have been prepared simply by surface texturing of porous silicon films with capillary stress and the mechanism was studied in detail.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...